11 times-table and division facts

 \bigcirc The base 10 represents 2 × 11

$$2 \times 11 = 22$$

Use base 10 to work out 3×11

Draw your base 10 and complete the multiplication.

2 Complete the calculations.

Rosie is spotting patterns in the 11 times-table.

When I add together the digits of each multiple of 11, I always get an even number.

$$2 \times 11 = 22$$

2 + 2 = 4, which is an even number

a) Do you agree with Rosie? ______

Explain your answer.

b) What else do you notice?What other patterns can you see in the 11 times-table?Talk about it with a partner.

a) The place value counters represent 66

Circle groups of 11 to help complete the division.

b) Use place value counters to help complete the divison.

a) Complete the bar models and number sentences.

b) Draw a bar model to represent 7 × 11 Write the related division fact.

6 Filip runs 3 km every day for 11 days.

Dani runs 11 km every day for a week.

How much further does Dani run?

Compare methods with a partner.

Mr Scott is organising a cricket tournament.

a) There are 11 players in a cricket team.

5 teams have signed up for the tournament.

How many players have signed up?

How many more teams are needed?

8) Think of a 2-digit number.

Find the sum of the two numbers.

Tiny has done an example.

$$24 + 42 = 66$$

Repeat with other 2-digit numbers.

What do you notice?

Why does this happen?

Use base 10 to help you explain.

