11 times-table and division facts

$$
2 \times 11=22
$$

Use base 10 to work out 3×11
Draw your base 10 and complete the multiplication.

$3 \times 11=\square$
(2) Complete the calculations.
a) $5 \times 11=$ \square
e) $7 \times 11=$ \square
b) $9 \times 11=$ \square
f) $4 \times 11=$ \square
c) $6 \times 11=$ \square
g) $3 \times 11=$ \square
d) $10 \times 11=$ \square

Rosie is spotting patterns in the 11 times-table.

a) Do you agree with Rosie? \qquad Explain your answer.
b) What else do you notice?

What other patterns can you see in the 11 times-table? Talk about it with a partner.
a) The place value counters represent 66

Circle groups of 11 to help complete the division.
$66 \div 11=$ \square
b) Use place value counters to help complete the divison.
$44 \div 11=$ \square
a) Complete the bar models and number sentences.

88										

b) Draw a bar model to represent 7×11 Write the related division fact.
6) Filip runs 3 km every day for 11 days.

Dani runs 11 km every day for a week.
How much further does Dani run?

Compare methods with a partner.
Repeat with other 2-digit numbers.
What do you notice?
Why does this happen?
Use base 10 to help you explain.

8 Think of a 2-digit number.
Reverse the digits to create a new 2-digit number.
Find the sum of the two numbers.
Tiny has done an example.

$$
24+42=66
$$

Mr Scott is organising a cricket tournament.
a) There are 11 players in a cricket team.

5 teams have signed up for the tournament.
How many players have signed up?
b) Mr Scott needs 132 players signed up to go ahead with the tournament.

How many more teams are needed?
\square more teams are needed.

