Question	Answer
1	
2	a) 55 c) 66 d) 110 e) 77 f) 44 g) 33 h) 132

a) Yes

1 is added to the tens digit and 1 is added to the ones digit, so 2 is added to the sum
of the digits. So the sum of the digits will always be even.
b) Up to 9×11, the two digits are the same.
a)

$$
66 \div 11=6
$$

b) 4
a)

88										
8	8	8	8	8	8	8	8	8	8	8

$$
88 \div 11=8
$$

$$
11 \times 8=88
$$

b)

110															
10	10	10	10	10	10	10	10	10	10	10					

$$
11 \times 10=110
$$

$$
110 \div 11=10
$$

c)

77										
7	7	7	7	7	7	7	7	7	7	7

$7 \times 11=77$
$77 \div 11=7$

44 km
Children may work out how far each person ran and then find the difference $77-33=$ 44 or children may have seen the difference was 4 days and multiplied this by 11
a) 55
b) 7 more teams are needed.

Question	Answer
7	The sum is always a multiple of 11 As the digits are reversed, the number of tens in the sum is the same as the number of ones, so the sum is a multiple of 11

